Gaussian Process Conditional Copulas with Applications to Financial Time Series
نویسندگان
چکیده
The estimation of dependencies between multiple variables is a central problem in the analysis of financial time series. A common approach is to express these dependencies in terms of a copula function. Typically the copula function is assumed to be constant but this may be inaccurate when there are covariates that could have a large influence on the dependence structure of the data. To account for this, a Bayesian framework for the estimation of conditional copulas is proposed. In this framework the parameters of a copula are non-linearly related to some arbitrary conditioning variables. We evaluate the ability of our method to predict time-varying dependencies on several equities and currencies and observe consistent performance gains compared to static copula models and other timevarying copula methods.
منابع مشابه
Copula - Based Models for Financial Time Series
This paper presents an overview of the literature on applications of copulas in the modelling of nancial time series. Copulas have been used both in multivariate time series analysis, where they are used to charaterise the (conditional) cross-sectional dependence between individual time series, and in univariate time series analysis, where they are used to characterise the dependence between a...
متن کاملRecent Developments in Copula Models
Copula models have become very popular and well studied among the scientific community. Now, most academic researchers, engineers, modelers, etc, own at least some basic copula toolkit and are able to apply it in real situations. Based on the famous Sklar’s theorem (Sklar 1959), copulas allow to put in place the fruitful idea of splitting the specification of a multivariate model into two parts...
متن کاملGaussian Process Vine Copulas for Multivariate Dependence
Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is ind...
متن کاملBayesian inference for conditional copulas using Gaussian Process single index models
Parametric conditional copulamodels allow the copula parameters to vary with a set of covariates according to an unknown calibration function. Flexible Bayesian inference for the calibration function of a bivariate conditional copula is introduced. The prior distribution over the set of smooth calibration functions is built using a sparse Gaussian process (GP) prior for the single index model (...
متن کاملEfficient estimation of a semiparametric dynamic copula model
Outline Introduction Semi-parametric dynamic copula Motivation Local likelihood estimation Variance of the estimator Bias of the estimator Bandwidth selection Estimation of joint likelihood Modeling of marginal distributions Simulations and applications Simulations Empirical example Conclusions Problems and Solutions Problems Modeling dependence is critical for financial time series Model volat...
متن کامل